
Changes in RailTopoModel 1.1
compared to RailTopoModel 1.0

Andreas Pinzenöhler, Airy Magnien

November 9, 2017



1. Introduction

RailTopoModel version 1.0 (short: RTM 1.0) has been published by UIC as IRS30100 in
April 2016. Since then, RailTopoModel attracted the attention of the industry, of soft-
ware vendors, and of Universities and Research Centres. In parallel, the early imple-
menters represented in the RTM workgroup continued the testing and implementation
of RTM, while also figuring out the future applications and developments. Also, match-
ing successive versions of RTM with successive versions of railML3.x, the associated
data exchange format, calls for robust solutions, with some effects on the RTM struc-
ture. Overall, these practical works led to a number of small, but significant changes in
RTM. These changes are partly documented as notes in the UML diagrams; the follow-
ing provides more information.

2. Objective of the present document

The present document summarizes and explains the changes relative to the initial ver-
sion, RailTopoModel 1.0, as published on: http://www.railtopomodel.org/en/. The
information in dedicated wiki: http://wiki.railtopomodel.org/index.php?title=

Main_Page will be gradually updated.

3. Overview on RailTopoModel 1.1 main changes and their ra-
tionale

The present section mentions most changes following a systematic, top-down approach.

3.1 Design principles: SOLID

According to Wikipedia,

In computer programming, the term SOLID is a mnemonic acronym for five
design principles intended to make software designs more understandable,
flexible and maintainable.

RailTopoModel is now published as a standard (IRS30100), for which understandabil-
ity, flexibility and maintainability are obviously important. The initial version of Rail-
TopoModel has therefore been reviewed in the light of the aforementioned five princi-
ples, which we summarize here:

1

http://www.railtopomodel.org/en/
http://wiki.railtopomodel.org/index.php?title=Main_Page
http://wiki.railtopomodel.org/index.php?title=Main_Page


Initial Concept
S Single responsibility principle: a class should have only a single responsi-

bility (i.e. only one potential change in the software’s specification should
be able to affect the specification of the class)

O Open/closed principle: software entities should be open for extension, but
closed for modification.

L Liskov substitution principle: objects in a program should be replaceable
with instances of their subtypes without altering the correctness of that pro-
gram.

I Interface segregation principle: many client-specific interfaces are better
than one general-purpose interface.

D Dependency inversion principle: one should depend upon abstractions, not
concretions.

3.2 Functionalities

RTM 1.1 does not add any new functionality, compared to RTM 1.0. This is only a
maintenance release.

3.3 Packages

The overall package structure has been revised. Packages Base and PositioningSystem
have been moved into one "superpackage" called Common, and all other packages were
grouped into an Infrastructuresuperpackage. The package Network has been created to
host the classes Network, LevelNetwork and NetworkResource. A few classes, such as As-
sociatedNetElement and OrderedAssociatedNetElement, have changed container package.

2



3.4 Classes

3.4.1 New classes

The former BaseObject hosted three main attributes: Identificator, Name, validity pe-
riod. Most, but not all three are needed in every descendent class. The decision was
then as follows:

• BaseObject now only retains the identificator, id, of generic type tID. The identi-
ficator type is for the user to choose amongst the daughter datatypes of tID: the
recommended choice is UUID. Users wishing to retain compatibility with existing
data repositories may however use legacyID.

• The new class NamedResource inherits id and implements the name attribute that
was formerly with BaseObject. Furthermore, a longname attribute has been added
for convenience.

3



• The existing class NetworkResource inherits from NamesResource and implements
the validity attributes. The semantics of validFrom and validTo attributes of all
descendent classes is now homogeneous: the time period between validFrom and
validTo is the time of functional availability of the network object “in the field”.

• Validity periods are also used by other classes in the Positioning package. These
classes do not derive from NetworkResource, but from BaseObject or (now) Name-
dResource. The attributes validFrom and validTo are therefore introduced separately
in these classes, with the same name, but different semantics because the validity
period does NOT describe the functional availability of an infrastructure element.

• Two new classes, AssociatedNetElementIntrinsic and AssociatedNetElementCoordi-
nate, have been introduced to separate intrinsic locations from other location con-
cepts. In such way, it is possible to localize use intrinsic locations and (for in-
stance) spatial locations independently from each other.

3.4.2 New attributes in classes

• BaseObject now has an attribute id:ID in addition to uuid:UUID. The optional id at-
tribute has been introduced for the purpose of compatibility with existing railML
schemes.

• NamedResource holds, in addition to the name attribute, a new attribute longname.

• LevelNetwork used to inherit a string attribute Name from BaseObject. However,
the purpose here was to characterize the level as Macro, Meso, Micro that are de-
fined in the IRS30100. LevelNetwork no longer inherits the Name attribute, because
it is replaced by a specific descriptionLevel attribute. We created the correspond-
ing enumeration type to enforce the usage of the standard names Macro, etc., for
levels. RTM Users are free to extend the enumeration, in line with the possibility
offered by IRS30100 to create any additional level when needed.

3.5 Associations and roles

3.5.1 Changed associations

Many small changes took place after the re-definition of BaseObject and NetworkRe-
source, plus the introduction of NamedResource in between.
One major change is the suppression of the direct association between LinearLocation
and PositioningNetElement. Reason is, that association was redundant with the indi-
rect association (via AssociatedNetElement) but did not keep the sequence order of the
PositioningNetElement instances, while this order is absolutely needed.

4



3.5.2 Naming

Role names are systematically given to the navigable end of any association. Associ-
ation names (often repeating the target role name) have been removed, because they are
not useful (they are not used for generating railML files for instance.
Role names are now systematically in the plural if the cardinality is greater than 1.

3.5.3 Cardinalities

Cardinalities have been reviewed and sometimes changed.

3.5.4 Shared aggregations instead of composite aggregations

In RTM 1.0, Network instances were composed of instances of NetworkResource. In
RTM 1.1, these instances can now be shared, as the composite aggregation (black di-
amond) was changed into a shared aggregation (white diamond). This change enables
a flexible definition of overlapping (sub-)networks, a commonly encountered need.
Also, the composition link between Network instances and network levels such as "macro",
"micro", etc. (instances of LevelNetwork) has been changed into a shared aggregation, for
similar reasons: LevelNetwork instances refer to sets of network resources that may, sim-
ilarly, overlap.

3.5.5 Colour scheme

Each package has one associated colour for representing member classes. The consis-
tency of colours between all diagrams has been checked.

4. Complete list of changes

See appendix (pdf file).

5


	Introduction
	Objective of the present document
	Overview on RailTopoModel 1.1 main changes and their rationale
	Design principles: SOLID
	Functionalities
	Packages
	Classes
	New classes
	New attributes in classes

	Associations and roles
	Changed associations
	Naming
	Cardinalities
	Shared aggregations instead of composite aggregations
	Colour scheme


	Complete list of changes

